

Smart Fine Particle Collector (SFPC)

The pretreatment of clean water samples in microplastics (MPs) analysis commonly involves the use of vacuum filtration. This device allows users to choose the appropriate collection approach based on the analytical method and sample water volume (typically less than or greater than 1 liter), ensuring efficient collection of MPs from water samples.

Features

- Three collection methods can be selected depending on analysis technique and sample water volume.
- 2. Py-GC/MS analysis can be performed after spectroscopic analysis
- 3. Newly developed collection cup with a metal filter

Analytical method	Amount of sample	Collection method
Py-GC/MS	< 1 L	(A) · (B)
	≧ 1 L	(C)
Micro FT-IR	< 1 L	(B)
Micro Raman	≧1L	(C)

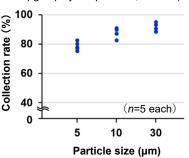
Refer to the back page for collection methods details.

The Quartz filter methods (B) and (C) allow Py-GC/MS analysis after non-destructive analysis, such as spectroscopic analysis.

Method (A) uses a newly designed collection cup with a built-in metal filter, allowing direct Py-GC/MS analysis of collected MPs.

Components of SFPC

The SFPC is designed with four essential components: (1) funnel, (2) collecting section, (3) suction bottle, and (4) vacuum pump. Its modular design allows the collecting section to be easily replaced, enabling seamless selection among three different collection methods depending on the analytical needs. By employing vacuum filtration, the SFPC ensures fast and efficient collection of MPs from water samples, even for processing large volumes or samples containing large amounts of contaminants.


Pre-filter (1) Funnel (300 mL) (2) Collecting section (3) Flask (1000 mL) (4) Vacuum pump

Specifications

Capacity	Funnel: 300 mL, Flask: 1000 mL	
Processing speed (distilled water used)	 (A) Collection cup method: approx. 180 mL / min (B) Quartz filter (S) punch-out method: approx. 60 mL / min (C) Quartz filter (L) punch-out/grinding method: approx. 2 L / min 	
Collectable particle size	(A), (B), or (C) method: Filter dependent (method (A): refer to the figure on the right)	
Collection cup	Eco-Cup LHF (Bottom hole Φ 1 mm, Deactivated stainless steel), Metal filter (1 μ m opening, Deactivated stainless steel)	
Standard accessories	Eco-Cup LHF for method (A), Metal filter, Metal filter fitting jig, Quartz filter (L), etc.	
Vacuum pump	Oil-free vacuum pump	
Power requirement	100 ~ 240 VAC, 50/60 Hz, 30 VA	

Example of collection rate using the collection cup method

(Sample: Model sample water containing 150 µg of polymer particles, 300 mL)

(5 μm: polypropylene, 10, 30 μm: Polyethylene)

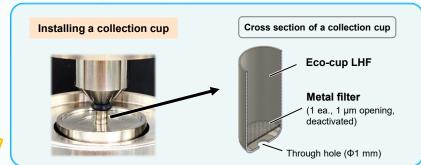
Three collection methods for your analysis need and sample water volume

Sample water < 1 L

Pre-filter

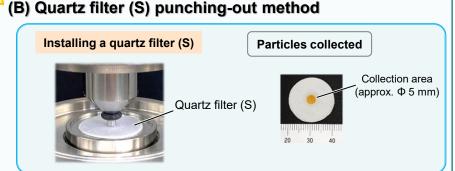
(1) Funnel

(2) Collecting section


(3) Flask

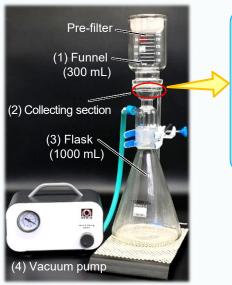
(1000 mL)_s

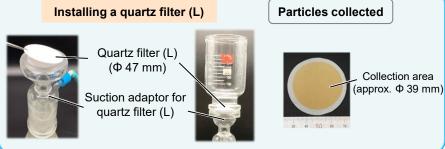
Vacuum pump


(300 mL)

(A) Collecting-in-a-cup method

This is a quick and simple method that allows direct Py-GC/MS analysis of MPs collected in the collection cup. It uses a new type of collection cup: an Eco-Cup LHF (a pyrolysis sample cup having a 1 mm diameter through-hole at the bottom) into which a single metal filter is securely fixed. MPs are collected in the cup, dried, and analyzed by Py-GC/MS. The collection cup can be easily fabricated using the standard jig provided with the product.


can be easily fabricated using the standard jig provided with



This method captures MPs at the center of a quartz filter (S), approximately 5 mm in diameter. After collection, non-destructive analysis such as spectrometry can be performed. The collection area is then punched out with a puncher and put into a pyrolysis sample cup for Py-GC/MS analysis.

Sample water ≥ 1 L

(C) Quartz filter (L) punching-out / grinding method

This method collects MPs on a Φ 47 mm quartz filter (L). Its large filtration area enables high processing speed while minimizing filter clogging. It is particularly effective when several liters of low-concentration sample water or samples containing high levels of contaminants. After collection, non-destructive analysis such as spectrometry can be performed. Then, a portion of the collection area can be punched out with a puncher, or the entire quartz filter can be ground and homogenized using a grinder. A few milligrams of the ground material are placed into a pyrolysis sample cup for Py-GC/MS analysis.

Visit our website for the latest information **www.frontier-lab.com**