

# 熱分解GC/MSを用いるマイクロプラスチック分析用 MP校正標準試料セット

本製品は、熱分解 (Py-)GC/MSを用いて環境中のマイクロプラスチック (MPs) を分析するための検量線作成を目的としたMP校正標準試料です。ポリマーには、世界で生産量の多い12種類を選択し、数 $\mu$ g程度の微量ポリマーをセミミクロ天秤でも容易に秤量できるように希釈剤で数千倍希釈して均一混合しました。

### MP校正標準試料を構成する12種類のポリマー

希釈剤: 炭酸カルシウム (CaCO<sub>3</sub>) あるいは 二酸化ケイ素 (SiO<sub>2</sub>)

| - <del>(</del> CH <sub>2</sub> CH <sub>2</sub> <del>)</del> <sub>n</sub> | $ \begin{array}{c c} CH_3 & OC \\ CH_3 & OD_n \end{array} $                                              | (CH <sub>2</sub> CH) <sub>1</sub> (CH <sub>2</sub> CH = CHCH <sub>2</sub> ) <sub>m</sub> (CH <sub>2</sub> CH) <sub>n</sub><br>CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ポリエチレン (PE)                                                              | ポリカーボネート (PC)                                                                                            | アクリロニトリル-ブタジエン-スチレン樹脂 (ABS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -{CH <sub>2</sub> CH (CH <sub>3</sub> ) }-                               | CH <sub>3</sub><br>-(CH <sub>2</sub> C)-<br>COOCH <sub>3</sub>                                           | $-(CH_2CH = CHCH_2)_m + (CH_2CH)_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ポリプロピレン (PP)                                                             | ポリメタクリル酸メチル (PMMA)                                                                                       | スチレンブタジエンゴム (SBR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -( CH₂CH ) <sub>n</sub>                                                  | $ \left\{ \begin{array}{c} C - \bigcirc -CO - (CH_2)_2 - O \\ \parallel O & O \end{array} \right\}_{n} $ | $ \begin{pmatrix} 0 & & & & & \\ 0 & & & & & \\ N & & & & \\ N & & & & \\ N & & & & \\ N & & & & \\ N & & & & & \\ N & & & \\ N & & & & \\$ |
| ポリスチレン (PS)                                                              | ポリエチレンテレフタレート (PET)                                                                                      | ポリウレタン <b>* (PU)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del>-(</del> CH₂CH) <del>-</del><br>I<br>CI                             | $ \begin{bmatrix} C - (CH_2)_5 - NH \\ 0 \end{bmatrix}_n $                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ポリ塩化ビニル (PVC)                                                            | ナイロン6 (N6)                                                                                               | ナイロン66 (N66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

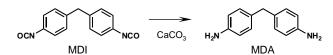
\*PUはCaCO3希釈剤使用時のみ分析可

## 2種類のMP校正標準試料の選択法

MPsの環境分野における分析法としてPy-GC/MS法を用いたほとんどの報告において、採取試料を前処理した後、試料カップに入れてそのまま熱分解する方法が採用されています。弊社では、この方法に希釈剤として微粒子(SiO2)を加える方法Aを開発し、PU分析の問題点を明確にしました(参考文献1)。

さらに弊社では、方法Aの問題点の解決手法として熱分解温度600  $^{\circ}$ Cにおいて触媒作用が極めて弱い $CaCO_3$ を希釈剤として利用した方法Bを開発しました(参考文献2)。

弊社のMP校正標準試料は、上記の方法Aと方法Bのどちらでも選択できるように2種類の製品(A: MPs-SiO2 と B: MPs-CaCO3)を用意しました。

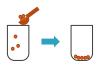

#### 参考文献

- 1) M. Matsueda et al., J. Anal. Appl. Pyrolysis 154 (2021) 104993.
- 2) T. Ishimura et al., J. Anal. Appl. Pyrolysis 157 (2021) 105188.
- 3) K. Matsui et al., J. Anal. Appl. Pyrolysis 149 (2020) 104834.

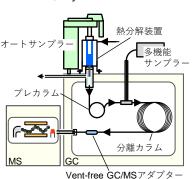
# ポリマーの 600 ℃ 熱分解時における希釈剤CaCO3の触媒作用

#### PU

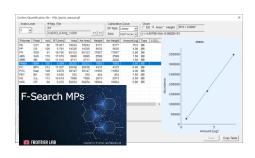
PUの熱分解では、ジイソシアネート (MDI) が生成しますが、反応性が非常 に高いためにGC分析では定量性に問題があります。そこで弱い触媒活性の CaCO<sub>3</sub>を用いて、より安定なジアミン (MDA) に変換して分析します。




#### PET


PETの熱分解では、安息香酸 (BA)が生成しますが、有機酸のためにGC 分析では定量性に問題があります。そこでCaCO3により、安定なベンゾ フェノン (BP) に変換して分析します。

## 使用例

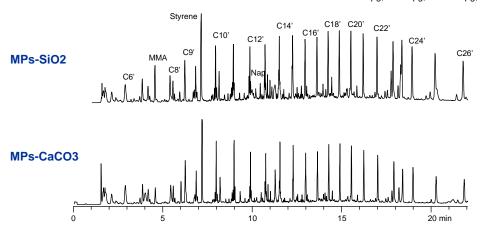

① MP校正標準試料を 試料カップに4 mg秤量



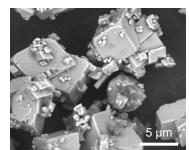
② Py-GC/MS分析



③ 専用のソフトウェア F-Search MPs (参考 文献3)を用いて検量線作成、次に実試料分析




## MP校正標準試料のパイログラム例


(EGA/PY-3030D、熱分解温度600℃)

試料 4 mg中に含まれるポリマー量 (これらは多考値になりますので、製品に付属される検査証をご確認ください。)

PE: 160  $\mu$ g, PP: 40  $\mu$ g, PS: 8  $\mu$ g, ABS: 16  $\mu$ g, SBR: 16  $\mu$ g, PMMA: 8  $\mu$ g, PC: 4  $\mu$ g, PVC: 40 μg, PU: 4 μg, PET: 16 μg, N6: 5 μg, N66: 18 μg, 希釈剤: 約3.7 mg



#### MPs-CaCO3のSEM写真



(立方体はCaCO<sub>3</sub>、他はMP)

## 内容品

| MP校正標準試料セット(製品番号:PY1-4940) |        |    |                                                            |  |
|----------------------------|--------|----|------------------------------------------------------------|--|
| 製品名称                       | 重量 (g) | 入数 | 詳細                                                         |  |
| MPs-SiO2                   | 1      | 1  | SiO <sub>2</sub> 微粒子で希釈均一混合したMP校正標準試料、TMAH*を用いる反応熱分解法に適用可能 |  |
| MPs-CaCO3                  | 1      | 1  | CaCO <sub>3</sub> で希釈均一混合したMP校正標準試料                        |  |
| 希釈剤SiO2                    | 3      | 1  | SiO <sub>2</sub>                                           |  |
| 希釈剤CaCO3                   | 3      | 1  | CaCO <sub>3</sub>                                          |  |
| MPs-石英ウール                  | 0.2    | 1  | 試料カップ中の試料の上に軽く詰めて飛散を防止                                     |  |
| マイクロスパチュラ03                |        | 1  | 微量粉末試料のサンプリング用                                             |  |

\* Tetramethyammonium hydroxide



## 🔘 フロンティア・ラボ 株式会社

最新の情報は弊社ウェブサイトをご覧ください

www.frontier-lab.com/jp TEL: 024-935-5100